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ABSTRACT

-We introduce several new classes of graphs on which the maximum-weight

clique problem is solvable in polynomial time. Their common feature, and the

central idea of euw algorithms, is that every clique of any of-ou graphs is

contained in some member of a polynomial-sized collection of induced subgraphs

that are complements of bipartite graphs. -Our approach is quite gEneral, and

might conceivably yield many other classes of raphs along with corresponding

polynomial time algorithms. / / 1 ,-,
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0. INTRODUCTION

The maximum-weight clique problem, or MWCP for short, goes as follows:

given a graph whose vertices carry numerical weights, find a clique (that is,

a set of pairwise adjacent vertices) whose total weight is as large as

possible. This problem is notoriously hard, even when all the weights are

equal; the problem of deciding whether a prescribed graph contains a clique of

a prescribed size is NP-complete; in fact, this problem was one of the five

prototypes of NP-complete problems presented by Cook (1971) in the classical

paper that laid the foundations of NP-completeness theory.

Nevertheless, there are several known polynomial-time algorithms each of

which solves the MWCP on all graphs coming from some restricted class. In

this paper, we present new algorithms of this kind. The method used to design

these algorithms is quite general, and might conceivably yield many other

* algorithms.

1. THE RESULTS

We reserve the letter n for the number of vertices of a graph G. If C is

a class of graphs and t is a number, we say that C is t-bounded if every G in

C has O(nt) maximal cliques. (Here, as usual, "maximal" is meant with respect

to set inclusion, not size.) We say that C is tame if no G in C contains an

induced subgraph that is an odd antihole (defined as the complement of an odd

. hole, i.e. of a chordless cycle whose length is odd and at least five). We

say that a green/red coloring of the edges of a graph is C-formative if the

green graph belongs to C and the red graph contains no triangle. Our key

result goes as follows.

r7.
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2

. THEOREM 1. For every t-bounded and tame class C there is an algorithm

- that, given any graph G along with a C-formative coloring of its edges, solves

any MWCP on G in O(n2t+3) steps. II

Our prime example of a t-bounded and tame class of graphs is the class TR

of triangulated graphs, defined as graphs in which every cycle of length at

least four has a chord. These graphs were introduced by Hajnal and Suranyi

(1958) and studied further by Berge (1960), Dirac (1961), and many others. In

particular, Dirac proved that every triangulated graph has a simplicial

vertex, defined as a vertex whose neighbours are all adjacent to each other;

an instant corollary of this theorem states that every triangulated graph has

at most n maximal cliques. Hence TR is 1-bounded; since every odd antihole

contains a chordless cycle of length four or five, TR is also tame.

Now let C1 stand for the class of all graphs that admit C-formative edge

colorings. Theorem I provides a polynomial-time algorithm for solving any

MWCP on any graph in some subclass C* of C1 if and only if a polynomial-time

algorithm to find a C-formative edge coloring of every graph in C* is

available. In particular, if such an algorithm is available for every graph

in C1, that algorithm can be used to test membership in C1. Our next result

7 shows that the existence of such an algorithm is unlikely when C = TR.

THEOREM 2. Testing membership in TR1 is an NP-complete problem.II

Thus we are led to look for some proper subclass C* of C1 with a

polynomial-time algorithm to construct a C-formative edge coloring of every

graph in C*. One way of doing this is to impose additional constraints on the

C-formative edge colorings. For instance, rather than requiring that the red

graph contain no triangle, we might insist that it be bipartite. This idea

leads to the following notion: we say that a partition of the vertex set of G

into disjoint parts V, and V2 is C-formative if each of the two subgraphs of G
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induced by V, and V2 belongs to C. Clearly, as long as C is closed under

disjoint unions, each C-formative vertex partition of G yields a C-formative

edge coloring of G. In this case, Theorem 1 has an instant collary with

"coloring of its edges" replaced by "partition of its vertices". In fact, the

assumption that C is tame can be dropped, and the resulting statement holds

true even if C is not closed under disjoint unions.

THEOREM 3. For every t-bounded class C there is an algorithm that, given

any graph G along with a C-formative partition of its vertices solves any MWCP

on G in O(n2t+3) steps.If

Let C2 stand for the class of all graphs that admit C-formative vertex

partitions. We have observed that C2 C whenever C is closed under

disjoint unions; in particular, TR2 _ TR . Examples of graphs in TR2-TR are

all holes and antiholes. For holes this is obvious. For an antihole, let V1

and V2 be the odd-numbered and even-numbered vertices, respectively, of the

*cycle whose complement is the given antihole. Then V, and V2 is a

TR-formative vertex partition of the antihole. Examples of graphs in TR1-TR2

are all graphs that contain no triangles and whose chromatic number exceeds

four. (Triangle-free graphs of an arbitrarily high chromatic number were

* constructed first by Tutte, writing under the name of Blanche Descartes
=4

-4 (1954); another family of such graphs was constructed independently by

Mycielski (1955). For a strong result on such graphs, see Erdos (1959)

and Lovasz (1968).) Trivially, every such graph G belongs to TR1 (color

all edges red). To see that G J TR2 , observe that every triangulated induced

*subgraph of G is a forest; since the chromatic number of G exceeds four, two

such subgraphs cannot cover all the vertices of G.

Y* ~*~ v. **..~-\~- 7



* 4

Again, Theorem 3 provides a polynomial-time algorithm for solving any

MWCP on any graph in some subclass C* of C2 if any only if a polynomial-time

algorithm to find a C-formative vertex partition of every graph in C* is

available. Again, if such an algorithm is available for every graph in C2 ,

then the algorithm can be used to test membership in C2 . Again, we have a

result showing that the existence of such an algorithm is unlikely when C

TR.

THEOREM 4. Testing membership in TR2 is an NP-complete problem.i

To obtain a subclass C* of C2 such that a C-formative vertex partition of

"- every graph in C* can be found in polynomial time, we may begin with any

* polynomial-time heuristic that attempts to construct the partition, and then

simply define C* as the class of those graphs on which the heuristic

. succeeds. (The same approach can of course be used to obtain a subclass of C1

such that a C-formative edge coloring of every graph in the subclass can be

found in polynomial time.) We use this approach with heuristics based on a

certain subroutine that we call GREEDY. The input of GREEDY is any graph G

whose vertices have been labeled as vl,v2,...,vn; its output is either a

C-formative vertex partition of G or a failure message. In the description of

GREEDY and later on, we let G(S) denote the subgraph of G induced by S.

GREEDY:

V 1 V2

for i = 1,2,...,n do

if G(VI  jvi}) c C then VI 4- V1 u ivi}

else V2 * V u v i}2 2 1
endif

endfor

if G(V2 ) e C then return V, and V2

else return a failure message endif

*-*-. .-.. .. ' ... . *.-. .... *. .. **,. .- -.-. .-.. -... ... * ~ : . , .* * - ..- ,- .--- ° .- ~ y -, -. - - -. . . --.-. .- .
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Note that GREEDY runs in time O(ns"1) whenever membership in C can be tested

in O(ns) steps for some constant s.

Since GREEDY works with labeled graphs, it gives rise to a variety of

algorithms working with unlabeled graphs: each of these algorithms first

labels the vertices and then applies GREEDY. In the remainder of this

section, we shall discuss three special cases in detail.

First, the simplest way to construct a labeling of the vertices of G is

to take an arbitrary labeling; we shall let C3 denote the class of graphs on

which the resulting algorithm always delivers a C-formative vertex

partition. To put it differently, G belongs to C3 if and only if GREEDY

succeeds on G for each of its n! labelings.

THEOREM 5. Let C be any t-bounded class of graphs such that members of C

can be recognized in O(n2t+2) steps. Then any MWCP on any graph in C3 can be

solved in O(n2t+3) steps.I1

Note that the hypothesis of Theorem 5 is satisfied when C=TR and t=1:

Dirac's theorem implies at once that triangulated graphs can be recognized in

O(n4) steps. (Actually, the runnning time of an algorithm designed by Rose,

Tarjan, and Lueker (1976) to recognize triangulated graphs is only O(n2), but

O(n4) is good enough for our purpose.)

COROLLARY 5A. Any MWCP on any graph in TR3 can be solved in O(n5)

steps.1

Our second algorithm attempts to construct a labeling whose properties

guarantee the success of GREEDY. If such a labeling is found then GREEDY is

applied; else a failure message is returned. To explain the details, we need

two more definitons. First, a vertex v in a graph F will be called

C-acceptable if F-v contains no disjoint sets S1,S2 of vertices such that

F(SI) e C, F(S2) C, F(S1 u v}) C, F(S2 'J {v}) C.
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Second, a labeling vlv 2,...,v n of the vertices of G will be called

C-formative if each vk is C-acceptable in G((vl,v2,..,,vk}). Clearly, if

GREEDY is given a graph G with a C-formative labeling, then it finds a

C-formative vertex partition of G. (Here, we are tacitly assuming that graphs

* with no vertices at all belong to C.) The following algorithm, given any

graph G, will either find a C-formative labeling of G or establish that no

*: such labeling exists.

LABEL:

F-G, k-n, failure-false

While k > 0 and failure = false do

if F has a C-acceptable vertex v

then vk .V, F'-F-v, k-k-1

else failure-true

endif

endwhile

if k = 0 then return v1 , v2, ..., vn

else return a failure message

*endif

Note that LABEL runs in time O(ns+2) whenever C-acceptable vertices can be

recognized in O(ns) steps for some constant s.

Let C4 denote the class of all graphs on which LABEL succeeds. (This

. class is well-defined: the success of LABEL is independent of the cnoice of v

in each iteration.)

*THEOREM 6. Let C be any t-bounded class of graphs such that memebers of

C can be recognized in O(n2t+2) steps, and C-acceptable vertices can be
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recognized in O(n2t+I) steps. Then any MWCP on any graph in C4 can be solved

in O(n2t+3) steps.I

Trivially, a vertex v in a graph F is TR-acceptable if and only if F-v

contains no disjoint sets S1 , S2 of vertices such that both F(SI u {v}) and

F(S2 u (v}) are chordless cycles of length at least four. To put it

differently, v is not TR-acceptable if and only if F-v contains vertex

disjoint paths P1 P2 such that each Pi has at least two edges, and its

terminal points xi,y i are adjacent to v in F. For each fixed choice of

x1,y1 ,x2,Y2, the existence of P1,P2 can be tested by efficient algorithms

designed independently by Seymour (1980) and Shiloach (1980). In particular,

Shiloach's algorithm runs in time O(n3 ); it follows that TR-acceptable

vertices can be recognized in O(n7) steps.

COROLLARY 6A. Any MWCP on any graph in TR4 can be solved in O(n9)

steps. I

Note that TR3 _ TR4  and TR4 J TR3: the antihole with seven vertices

belongs to TR3-TR4 and the graph shown in Fig. 1 belongs to TR4 -TR3.

vi

VV

74 V7V 3

v6 V7

Figure 1
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However, Corollary 6A holds with TR4 replaced by a certain class TR5 such that

TR3 j TR4 c TR5 c TR2.

More generally, consider an arbitrary class C of graphs. LABEL, given an

* arbitrary graph G, will produce some induced subgraph F of G and a labeling

vk+1,vk+2,...,vn of the vertices in G-F. It is an easy exercise to show that
C5 3

F depends only on G and C; we set G e C if and only if F e C3.

Trivially, a C-formative vertex partition of any G in C can be constructed by

first taking an arbitrary labeling vl,v 2 ,...,vk of the vertices of F and then

applying GREEDY.

THEOREM 7. Let C be any t-bounded cls. of graphs such that members of C

can be recognized in O(n2t+2) steps, and C-acceptable vertices can be

recognized in O(n2t+1) steps. Then any MWCP on any graph in C5 can be solved

" in O(n2t+3) steps.i

COROLLARY 7A. Any MWCP on any graph in TR5 can be solved in O(n9 )

steps.11

Examples of graphs in TR5 - (TR3 u TR4) can be obtained by joining a

graph in TR4 to a graph in TR3 by an appropriate set of edges. For instance,

joining the vertices 1, 6 and 7 of the graph in Figure I by three edges to any

three vertices of the antihole on seven vertices yields a graph in TR5 .

As we have observed, C5 : C2; since G C4  if any only if F has no

vertices at all, we have C4 : C Finally, if C is hereditary in the sense

that every induced subgraph of every graph in C is also in C, then C3 is

hereditary, and so C3 _ C5 .

Variations on the theme of C5 abound. For instance, observe that all

bipartite graphs and complements of all bipartite graphs belong to TR2 ; in

fact, a TR-formative vertex partition of each of these graphs can be found in

*'At
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O(n2) steps. This observation suggests setting G TR6  if and only if

F e TR3 or F is bipartite or the complement of F is bipartite.

THEOREM 8. Any MWCP on any graph in TR6 can be solved in O(n9) steps. If

Trivially, we have TR5 c TR6 c TR2 . Examples of graphs in TR6-TR5 can

* be obtained by joining a graph in TR4 to a bipartite graph not in TR
3 u TR4

by an appropriate set of edges. For instance, joining the vertices 1, 6, 7 of

the graph shown in Fig. I by three edges to any three vertices of K5,5 - e

(where e is an arbitrary edge of the complete bipartite graph K5,5) yields a

graph in TR6-TR5. As examples of graphs in TR2-TR6, we mention the antiholes

with n vertices for n 9.

In closing this section, we recall that members of TR4 are recognizable

in O(n9) steps. We know no polynomial-time algorithm for testing membership

in TR3 or TR5 or TR6, although for each of these classes there is a polynomial

time algorithm that, given any graph G, solves the MWCP on G or shows that G

* does not belong to the class.

l 2. PROOFS

We begin with two well-known facts; their proofs are included for the

sake of completeness.

FACT i. There is an algorithm that, given any graph G, lists all the

maximal cliques in G in 0(n2k2 ) steps, with k standing for the number of items

on the list.

PROOF. The following algorithm will do.

" " " """' " " " " " " "" "' " " " " "" ." "' ". " " " " " " " " ' ' " . , / , . . -- , --.- 4 -- -, , ,, ' '
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V-the vertex set of G; LIST.-(}.

while V 0 0 do

remove a vertex w from V

N-the set of all neighbours of w that lie outside V

t-0

for all Q in LIST do

P*.Q n N, t~t+l, Qt4P u (W}

if P = Q then LIST-LIST - ,Q} endif

endfor

for j = 1,2,...,t, do

SMALL(j)-false

for i = 1,2,...,j-1 do

if Qi Q. then SMALL(i)-true endif

if Q. : Qi then SMALL(j) true endif
-J endfor

endfor

for j = 1,2,...,t do

if SMALL(j) = false then LIST-LIST ( IQ.} endif

endfor

endwhile. if

Actually, the running time of an algorithm designed by Tsukiyama, Ide,

. Arioshi and Shirokawa (1977) to list all the maximal cliques in G is only

0(n3k), but 0(n2 k2 ) is good enough for our purpose.

FACT 2. There is an algorithm that, given any graph G along with two

.- cliques in G whose union contains all the vertices of G, solves any MWCP on G

in O(n3 ) steps.

t 5  * * * * . . . * ** . ..%-

*o,. * . 5 - 4 . . . * .
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PROOF. The MWCP reduces to the problem of finding a minimum capacity cut

in a network N constructed as follows. No generality is lost by assuming that

*. the two cliques, Q, and Q2, that cover all the vertices of G are disjoint.

For nodes of N, take all nodes of G and two extra nodes, s and t; for arcs,

take

(*) an arc si of capacity equal to the weight of i for each i in Q1,

(*) an arc jt of capacity equal to the weight of j for each j in Q2,

(*) an arc ij of infinite capacity for each choice of i in Q, and j

in Q2 such that i and j are not adjacent in G.

- A cut in a network with source s and sink t is any set S of nodes such that

s E S and t I S; the capacity of this cut is the sum of the capacities of

all the arcs ij with i E S, j i S. In our network, the capacity of a cut S

- is finite if and only if the set Q defined by

Q = (Q1 n S) u (Q2 \S)

is a clique of G; if this is the case then the weight of Q and the capacity of

S add up to the total weight of all the vertices of G. Thus finding a clique

of maximum weight in G amounts to finding a cut of minimum capacity in N. The

latter problem can be solved by a variety of efficient algorithms; in

particular, an algorithm designed by Malhotra, Kumar, and Maheshwari (1978)

runs in time 0(n3 ); for details of its implementation, see Chvatal (1983,

.. pp. 380-386).I1

Our key notion is that of a clique basis, defined as a set of cliques

Q1,Q2, ... ,9Qk in a graph G such that each clique in G is a subset of some

Qi u Q . Our key observation goes as follows.

FACT 3. There is an algorithm that, given any clique basis Q142,...,Qk

in any graph G, solves any MWCP on G in O(n3k2 ) steps.
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(A proof is hardly required: to solve the MWCP on G, we only need to

solve k(k-1)/2 problems on the subgraphs of G induced by Qi u Qj.)

Our theorems will be proved in a permuted order.

PROOF OF THEOREM 1. By virtue of Facts 1 and 3, we only need to show

that all the maximal cliques in the green graph consitute a clique basis in

G. For this purpose, consider an arbitrary clique Q in G and let F be the

- subgraph of the red graph induced by Q. By assumption, F contains no

* triangle; since Q is a clique in G and since C is tame, F contains no odd

- hole. Thus F is bipartite; to put it differently, Q is covered by two cliques

of the green graph.JJ

PROOF OF THEOREM 3. We only need to observe that all the maximal cliques

in the subgraphs of G induced by V1 and V2 constitute a clique basis in G.II

PROOF OF THEOREM 4. Lovasz (1973) proved that the problem of

recognizing bicolorable hypergraphs is NP-complete, and that it remains

NP-complete even when the input is restricted to hypergraphs with all edges of

size three. (A hypergraph is a collection of sets E1,E2,..., Em called edges

whose elements are called points; the hypergraph is called bicolorable if its

points can be 'colored black and white in such a way that no edge is

monochromatic.) It follows easily that recognizing bicolorable hypergraphs is

an NP-complete problem even when the input is restricted to hypergraphs with

all edges of size four. Given any such hypergraph H, we shall construct a

graph G such that G e TR2 if and only if H is bicolorable.

First, let us construct a graph F with distinguished vertices x and y

such that F e TR2 and such that x and y must belong to distinct parts of

every TR-formative partition of the vertex set of F. This is easy to do:

take a K3,3  (the complete bipartite graph with three vertices in each part),

.-..-...-.. -* *...-.-. ... ,*..-..-.*-..- .. **... ....-..... ,.. .- .-....*. . * . ..- . .. . .,..-,.-...... .. . ... .. , . ,
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add two nonadjacent vertices x and y, and join each of these two by edges to

all the vertices of the K3,3.

To construct G, we create a copy of F for every pair (E,p), where E is an

edge of H and p e E; the two distinguished vertices of this F will be labeled

x(Ep) and y(E,p). Then for each p, we identify all the vertices labeled

y(Ep), y(E',p), y(E",p),... and label the resulting single vertex p*.

Finally, for each edge E of H, we enumerate the elements of E as a,b,c,d and

create a chordless cycle of length four in G by joining each of x(E,a), x(E,b)

to each of x(E,c), x(E,d).

To see that G e TR2 only if H is bicolorable, consider any TR-formative

partition of the vertices of G and, referring to the two parts as "black" and

"white", assign to each p in H the color of p* in G. We only need to show

that no edge E of H is nonochromatic. For this purpose, enumerate the

elements of E as in the construction of G and note that the vertices x(E,a),

x(E,b), x(E,c), x(E,d), inducing a chordless cycle of length four, cannot all

have the same color. Since the color of each x(E,p) differs from that of p*,

the desired conclusion follows.

To see that H is bicolorable only if G e TR2 , consider any bicoloring of

H. Transfer the color of each p in H to p* in G, give each x(E,p) the color

that differs from the color of p* and, in each F used in the construction of

G, color one part of the K3,3 black and the other part white. Clearly, each

of the two color classes induces a forest in G.II

PROOF OF THEOREM 2. Given any graph H we shall construct a graph G such

that G r TR 1 if and only if H e TR2.

First, let us construct a graph F with a distinguished edge xy such that

F e TRI and xy must be green in every TR-formative edge coloring of F. This

can be done by taking any graph F0 of a chromatic number greater than six that
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contains no triangle, adding two adjacent vertices x and y, and joining each

of these two vertices by edges to all the vertices of the FO . (Trivially,

F c TRI: color all the edges of F0 red, and all the remaining edges of F

green. To see that xy must be green in every TR-formative edge coloring of F,

assume the contrary. Writing z e V x if zx is green, and z e Vy if zy is

green, observe that each vertex of F0 belongs to V x o Vy, and that each of

the three graphs induced in F0 by VX n Vy, Vx-Vy and Vy-VX is bipartite.

* This contradicts the fact that the chromatic number of F0 exceeds six.)

To construct G, we take disjoint graphs F1 ,F2 ,F3 ,H such that each Fi is a

copy of F with distinguished edge xiY i. Then we identify yl with x2 , identify

- Y2 with x3, add edge x1y3 , and join each of the two vertices xI,y 3 by edges to

* all the vertices of H.

To see that G e TR1 only if H e TR2 , consider any TR-formative edge

coloring of G. Since xlyl, x2Y2 and x3Y3 are all green, xIy 3 must be red.

For each vertex v of H, write v E Vx if vxl is green, and write v e Vy if

vy3 is green. Clearly, each vertex of H belongs to precisely one of these two

sets (else vx1y3 would be a red triangle or vxlx 2x3y3 would be a green

chordless cycle) and each edge of H with both endpoints in the same set is

green. It follows that Vx and Vy form a TR-formative vertex partition of H.

A straightforward reversal of this argument shows that every TR-formative

vertex partion of H yields a TR-formative edge coloring of G; hence H e TR2

only if G e TR1.II

Theorems 5-8 and their collaries require no proofs: they follow easily

from Theorem 3 and the observations made in Section 1.
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3. COMPARISONS WITH PREVIOUS RESULTS

The size of an instance of the maximum-weight clique problem is, roughly

|. speaking, the amount of space required to record the data:

n
size = n + m +i! loglO (1 + wi)

1=

with n standing for the number of vertices, m for the number of edges, and wi

* for the weight of the i-th vertex. An algorithm for solving the MWCP with

input graphs restricted to some class C is referred to as a polynomial-time

* algorithm if, for some constant t, it solves any MWCP on any G in C in

*O(sizet) steps. We shall now discuss classes C for which such algorithms have

been designed; for each of these classes C, we shall point out graphs that

.*I belong to TR3 n TR4 but do not belong to C.

First, a graph is called perfect if, for each of its induced subgraphs F,

- the chromatic number of F equals the largest size of a clique in F. A

. polynomial-time algorithm for solving the MWCP on perfect graphs has been
, °

designed by Grotschel, Lovasz, and Schrijver (1984a). Chordless cycles whose

length is odd and at least five are not perfect, but the do belong to

* TR3 n TR4.

Second, Grotschel, Lovasz and Schrijver (1984b) also designed a

* polynomial-time algorithm for solving the MWCP on complements of h-perfect

. graphs, defined as graphs for which the convex hull of the incidence vectors

*of stable sets is given by the clique inequalities, the odd cycle

" inequalities, and the nonnegativity conditions. The graph shown in Fig. 2 is

not h-perfect, but its complement belongs to TR3 n TR4.

* **-,
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Figure 2

Third, a graph is called claw-free if it contains no induced subgraph

with vertices x,y,z,w, whose edges are precisely xw,yw,zw. Minty (1980)

designed a polynomial-time algorithm for solving the MWCP on complements of

claw-free graphs (the unweighted case was settled independently by Sbihi

*(1978)). Graphs consisting of two vertex-disjoint cliques with at least five

Svertices altogether are not complements of claw-free graphs, but they

." trivially belong to TR3 n TR4.

Fourth, Hsu, Ikura and Nemhauser (1981) designed a polynomial-time

algorithm for solving the MWCP on graphs whose complements contain no odd

cycle longer than an arbitrary but fixed constant k. Graphs with more than

k+I vertices and with no edges at all do not belong to this class, but they

" trivially belong to TR3 , TR4.

* Finally, Fact 1 implies that for every t-bounded class C there is an

algorithm that solves any MWCP on any graph in C in 0(n2t+2) steps. To see

3 3that no t-bounded class contains TR n TR4, consider the sequence of graphs
S.

d ..-. ., .. v.;; ). ,. .; -;./ . . ...,. . i, .. -/;;?. .--- ,.-,,
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G1 ,G2 ,G3,... such that Gk has vertices vl,v2,...,v2k and the only nonadjacent

pairs are vlv2,v3v4,...,v2klv2k. It is easy to see that Gk e TR3 n TR4 for

all k. On the other hand, Gk has 2k maximal cliques, and so no t-bounded

class contains all Gk.

4

* 4. EXTENSIONS, LIMITATIONS, APPLICATIONS

The observation underlying our method is that any MWCP on a graph G can

* be solved quickly whenever the vertex set of G is covered by a small number of

sets S1,S2,...,SN such that

(i) each clique in G is a subset of some Si,

(ii) each Si induces in G the complement of a bipartite graph.

(In Fact 3, we have N = ()) and each Sr is some Qu Q.) The only reason

for featuring complements of bipartite graphs in (ii) is that any MWCP on any

of these graphs can be solved quickly; we could just as well use any other

class C of graphs such that, for some constant t, some algorithm solves the

MWCP on any G in C in O(sizet) steps. We shall refer to such classes C as

t-solvable; their examples include the four classes discussed in the preceding

* section (perfect graphs, complements of h-perfect graphs, complements of

-. claw-free graphs, and complements of graphs with no odd cycle longer than a

constant), as well as the classes TR3 ,...,TR 6 introduced in Section 2. To

generalize Fact 3, let us define a C-cover in G as any collection of subsets

SIS2,...,gS k of the vertex set of G such that each clique in G is a subset of

-some Si, and such that each Si induces in G a member of C. The generalization

.' goes as follows:

%FACT 4. For every t-solvable class C there is an algorithm that, given

any graph G along with a C-cover S1,S2, ...,Sk solves any MWCP on G in O(k

sizet) steps.1I



w*J.- _L-~ _w -' - -a - - -* _.P -11 -7 J. F 77 -or.;

18

Now let f(G,C) stand for the smallest k such that G admits a C-cover

S,S 2,...,Sk. Clearly, Fact 4 provides a polynomial-time algorithm for

solving every MWCP on every graph in some class C* only if, for some

t-solvable class C and for all G in C*,

f(G,C) does not exceed a fixed polynomial in n. (4.1)

We are going to show that, for every class C that satisfies a certain

technical assumption, a randomly chosen graph G is extremely unlikely to

satisfy (4.1). To make this claim precise, let us first clarify the meaning

. of "extremely unlikely". For this purpose, consider any property P that a

* graph may or may not have, and let P(n) equal the number of graphs with

vertices vl,v 2 ,...,vn that have the property.

It is customary to say that almost all graphs have property P if

Im P(n)

nlm 2 = 1 (4.2)

(Observe that the denominator in (4.2) counts the number of graphs with

vertices vl,v 2,...,vn, and so the ratio in (4.2) equals the probability that a

randomly chosen graph with these n vertices has property P.)

Throughout the remainder of this section, we write log x for log2 x.

THEOREM 9. Let C be any hereditary class of graphs other than the class

of all graphs. Then for every positive e, almost all graphs G have

n(1> - e) log n
f(G,C) > n (7 I1

Our proof of Theorm 9 is based on two lemmas.

LEMMA 1. For every graph F there is a constant c such that almost all

graphs G have the following property: every induced subgraph of G with at

least c log n vertices contains an induced subgraph isomorphic to F.
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PROOF. Let k stand for the number of vertices of F. Writing

a = exp (( )k(k
-l)/2 1

7 2k2

we shall prove the statement with c = 2/log a. To begin, let p(s) denote the

probability that a randomly chosen graph with vertices wlw2,...,w s has no

induced subgraph isomorphic to F. We only need to show that

n m, (Fc log n1) = (Fc log n) = O.

*For this purpose, let t(k,s) stand for the largest number t of sets

Q1,Q2,...,Qt such that

1Qi1 = k for all i, IQi n Q I whenever i # j and

t
U Qi

S.S

It is easy to see that

p(s) s p(k)t(k 's) (I- )k(k-1)/)t(k,s) s exp (-( )k(k'l)/2t(k,s)).
I2

Erdos and Hanani (1963) have shown that

(k
slim t(k,s). 2) I for all k;

(S)

In particular, t(k,s) s2/2k(k-1) / s2/2k2 whenever s S0(k). Hence

2
p(s) s a-s  whenever s > so(k ),

0I

a.-.. ~ .,-..*- *~r*c - S*.- - * a* a

'a a t * * "A,*.A

• :." '> ',, .w''; '*- ,' €' i *% .aat.'= ..- " . *, ** ' ' V"' € .. .. . .. . .'£-.
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and so

(n) p(s) _ (na-s)s whenever s - so(k).

. Since a-C log n n-2, the desired result follows.I

LEMMA 2. For every positive 6, almost all graphs G have at least

(I - 6)log n

n

cliques of size Llog nj.II

PROOF. As customary, we shall denote by P(A) the probability of event A,

and we shall let E(X) stand for the expected value of a random variable X. We

. shall rely on the Chebyshev inequality, stating that

.. P(X < E(X)-t) < E(X2 ) - (E(X)) 2  (4.3)
2 2E(X2) - (E(X)) + t

In addition, we shall use the fact that

k n-kk -ki ) < (1 + (tI) j)k whenever t _e (4.4)

k~)

(for an elementary proof, see Chvatal (1979)).

Now let n and k be fixed and let a random variable X count the number of

cliques of size k in a randomly chosen graph with vertices V1 ,V2,...,V n.

,- Clearly,

k

(n)

* 
and

" ~~~. . °...... . . .. o..... °•..... •
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k (
E(x2) = (i)(k-i)

Note that

E(X2) k n-kE(X) 1(k-i) 2

(E(X))2  =0 (k)

and so (4.4) with t = 2k2 implies

2 E(X2  < k2
2 k/2

(E(X))2  n

Substituting into (4.3) we obtain

k~22k/2

P(X s E(X)) 5 4(exp n ).(4.5)

,In addition, note that

E(X) > ( n-k)k.
k 2'

In particular, if k = Llog nJ then

2 E(X) k2 2k/2
lim.=+ and lim exp =i
n n (1/2-s)log n n p =n

and so the desired result follows from (4.5).1I

PROOF OF THEOREM 9. By assumption, there is a graph F such that no graph

in C contains an induced subgraph isomorphic to F. We only need show that all

graphs G with the two properties specified in Lemma 1 and Lemma 2 have

,,. .. .... . v.. .-. . .-...-..- ," -
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1 - )log n- c

f(G,C) > n

For this purpose, consider an arbitrary C-cover SI,S 2,...,Sk in G. W.l.o.g.,
we may assume that each Si is minimal; then by Lemma 1, we have Si  clog n

ma I emma 5 ilgi

,. for all i. Now Lemma 2 implies

( -)log n k
n 2 < 2 <k ,

which is the desired conclusion.II

Theorem 8 shows that for a randomly chosen graph G, Fact 4 is very

unlikely to yield a polynomial-time algorithm for solving the MWCP on G. On

Sthe other hand, the results of this paper can be used to devise improved

" heuristics or enumerative (non-polynomial-time) algorithms for solving the

* MWCP on an arbitrary graph. Let C be any t-solvable class for some constant

t, and suppose that for an arbitrary graph G, a maximal induced subgraph G(S)

of G that belongs to C can be generated in polynomial time. This is the case,

for instance, with the classes TRI and TR2 introduced in Section 2. If Q is a

maximum-weight clique of G(S), then any clique of larger weight than Q must

contain some vertex of V\S. Denoting by N(v) the neighbor set of vertex v,

one can branch by replacing G with the collection of induced subgraphs

G(N(vl)), G(N(v 2)\(vl}),...G(N(vp)-(Vl,...,Vp1l) where V : V\S. A

-" branch and bound algorithm of this type, using as C the class of graphs whose

chromatic number equals their maximum clique size, was proposed by Balas and

* Yu [1984] for the unweighted maximum clique problem. The algorithm was tested

on randomly generated graphs with up to 400 vertices and 30,000 edges with

considerably better results than earlier procedures based on straightforward

% . ~ . . . . . . . .

U. U .*...I * P: * *

* *S*"
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branch and bound. The classes of graphs introduced in this paper can be used

in a similar fashion to obtain algorithms for the MWCP on general graphs.

*.*** * * *
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